Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

Nonendothelial cells tubes

Transient receptor potential channel 4 (TRPC4) plays central roles in endothelial cell function. The aim of this study was to investigate the silencing effects of TRPC4 on oxidized low-density lipoprotein (oxLDL)-induced angiogenesis in human coronary artery endothelial cells (HCAECs), as well as the underlying molecular mechanism involved in this process.


HCAECs were transfected with small interfering RNA (siRNA) targeting TRPC4 (TRPC4-siRNA) or with a negative control (NC)-siRNA. The expression of TRPC4 was confirmed by real-time polymerase chain reaction (RT-PCR) and Western blotting. After the siRNA transfection, oxLDL was added to the medium. Cell proliferation, migration, and in vitro angiogenesis were determined by bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA), Transwell assay and scratch-wound assay, respectively, and tube formation on Matrigel. Expression of vascular endothelial growth factor (VEGF) and nuclear factor (NF)-κB p65 were assessed by Western blotting.


Both the mRNA and protein levels of TRPC4 were significantly reduced by transfection with TRPC4-siRNA compared to the control group or NC-siRNA group (P<0.05). Silencing of TRPC4 significantly decreased the cell proliferation, migration, and tube formation (all P<0.05). Furthermore, the expression levels of VEGF and NF-κB p65 were markedly lowered by silencing of TRPC4 in HCAECs.