Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

The theory of molecular shape

The rationalization of the structures adopted by purely ionic solids is essentially a straightforward exercise in the analysis of electrostatic interactions between ions. The problem of the structures of covalent compounds, both individual molecules, such as methane, and covalently bonded solids, such as diamond, is much more subtle, for it involves delving into the characteristics of the electron arrangements in individual atoms. Thus, if the formation of a covalent bond is regarded as corresponding to the accumulation of electrons in a particular region of an atom, then, to form a second bond, electrons can be accumulated into only certain parts of the atom relative to that first region of enhancedelectron density. As a result, the bonds will lie in a geometric array that is characteristic of the atom. The remainder of this section focuses on this problem, but a detailed quantum mechanical analysis is required for a full understanding of the matter.

The theory of molecular shape known as valence-shell electron-pair repulsion (VSEPR) theory grew out of Lewis’s theory, and, like that approach to bonding, VSEPR focuses on the role of electron pairs. It stems from the work of the British chemists H.M. Powell and Nevil V. Sidgwick in the 1940s and was extensively developed by R.J. Gillespie in Canada and Ronald S. Nyholm in London during the 1960s. As such, it postdates quantum mechanical theories of bonding and shape but should be seen (as is so common a motivation in chemistry) as an attempt to identify the essential features of a problem and to formulate them into a simple qualitative procedure for rationalization and prediction.