Email: support@essaywriterpros.com
Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

The Relationship of Verbal and Overt Behavioral Responses to Attitude Objects

If we wish to avoid the interpretive challenge of a mixed solution ESS, there is an alternative analytic solution concept that we can employ: the evolutionarily stable state. An evolutionarily stable state is a distribution of (one or more) strategies that is robust against perturbations, whether they are exogenous shocks or mutant invasions, provided the perturbations are not overly large. Evolutionarily stable states are solutions to a replicator dynamic. Since evolutionarily stable states are naturally able to describe polymorphic or monomorphic populations, there is no difficulty with introducing population-oriented interpretations of mixed strategies. This is particularly important when random matching does not occur, as under those conditions, the mixed strategy can no longer be thought of as a description of population polymorphism.

Now that we have seen the prominent approaches to both norm emergence and norm stability, we can turn to some general interpretive considerations of evolutionary models. An evolutionary approach is based on the principle that strategies with higher current payoffs will be retained, while strategies that lead to failure will be abandoned. The success of a strategy is measured by its relative frequency in the population at any given time. This is most easily seen in a game theoretic framework. A game is repeated a finite number of times with randomly selected opponents. After each round of the game, the actual payoffs and strategies of the players become public knowledge; on the basis of this information, each player adjusts her strategy for the next round. The payoff to an individual player depends on her choice as well as on the choices of the other players in the game, and players are rational in the sense that they are payoff-maximizers. In an evolutionary model, however, players learn and adapt in a non-Bayesian way, that is, they do not condition on past experience using Bayes’ Rule. In this sense, they are not typical rational learners