Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

Homeostasis: The tendency

The developments of systems theory are diverse (Klir, 

Facets of Systems Science, 1991), including conceptual foundations and philosophy (e.g. the philosophies of Bunge, Bahm and Laszlo); mathematical modeling and information theory (e.g. the work of Mesarovic and Klir); and practical applications. Mathematical systems theory arose from the development of isomorphies between the models of electrical circuits and other systems. Applications include engineering, computing, ecology, management, and family psychotherapy. Systems analysis, developed independently of systems theory, applies systems principles to aid a decisIon-maker with problems of identifying, reconstructing, optimizing, and controlling a system (usually a socio-technical organization), while taking into account multiple objectives, constraints and resources. It aims to specify possible courses of action, together with their risks, costs and benefits. Systems theory is closely connected to cybernetics, and also to system dynamics, which models changes in a network of coupled variables (e.g. the “world dynamics” models of Jay Forrester and the 

 Club of Rome). Related ideas are used in the emerging “sciences of complexity“, studying self-organization and heterogeneous networks of interacting actors, and associated domains such as far-from-equilibrium thermodynamics, chaotic dynamics, artificial life, artificial intelligence, neural networks, and computer modeling and simulation.