Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

enzymes of glutamine metabolism

Changes in protein and mRNAs for enzymes of glutamine metabolism were determined in rat kidney cortex at different times after induction of NH4Cl acidosis. After NH4Cl, phosphoenolpyruvate carboxykinase (PEPCK) mRNA increased 16-fold by 10 hr (P < 0.05) and then returned to control levels by 30 hr. In situ hybridization (ISH) showed that PEPCK mRNA was confined to medullary rays; after NH4Cl, expression of PEPCK expanded throughout the cortex, reaching a maximal intensity at 10 hr. Phosphate-dependent glutaminase (PDG) and glutamate dehydrogenase (GDH) mRNAs increased 8- and 2.6-fold, respectively (both P < 0.05), by 10 hr before decreasing; the increased expression was confirmed by ISH. Immunohistochemistry showed that increased PEPCK, PDG, and GDH protein occurred at variable times after the rise in mRNAs. The increase was confined to proximal tubules and was sustained, a finding noted also by Western blot analysis. In contrast, glutamine synthase protein and mRNA, confined to deep cortex and outer medullar, did not change after NH4Cl. These studies reveal striking changes in PEPCK and PDG mRNAs in rat renal cortex during acidosis. The ISH pattern suggested that increased amounts of PEPCK were synthesized in recruited cells which contained little enzyme under physiological conditions. mRNA levels for PEPCK, PDG, and GDH peaked at 10 hr before returning to control levels. Despite the decrease in mRNAs, a sustained increase in proteins was noted.