Email: support@essaywriterpros.com
Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

Chemical Bonding and Geometry

Any central atom surrounded by three regions of electron density will exhibit sp2hybridization. This includes molecules with a lone pair on the central atom, such as ClNO (Figure 9), or molecules with two single bonds and a double bond connected to the central atom, as in formaldehyde, CH2O, and ethene, H2CCH2.

Three Lewis structures are shown. The left-hand structure shows a chlorine atom surrounded by three lone pairs of electrons single bonded to a nitrogen atom with one lone pair of electrons and double bonded to an oxygen atom with two lone pairs of electrons. The middle structure shows a carbon atom single bonded to two hydrogen atoms and double bonded to an oxygen atom that has two lone pairs of electrons. The right-hand structure shows two carbon atoms, double bonded to one another and each single bonded to two hydrogen atoms.
Figure 9. The central atom(s) in each of the structures shown contain three regions of electron density and are sp2hybridized. As we know from the discussion of VSEPR theory, a region of electron density contains all of the electrons that point in one direction. A lone pair, an unpaired electron, a single bond, or a multiple bond would each count as one region of electron density.

sp3 Hybridization

The valence orbitals of an atom surrounded by a tetrahedral arrangement of bonding pairs and lone pairs consist of a set of four sp3 hybrid orbitals. The hybrids result from the mixing of one s orbital and all three p orbitals that produces four identical sp3 hybrid orbitals (Figure 10). Each of these hybrid orbitals points toward a different corner of a tetrahedron.