Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

Bioluminescence Sensors and Drug Discovery

“The detection of this so far hidden dynamic stability behaviour was mainly based on combining modern techniques of nonlinear dynamics analysis with state-of-the-art observations,” says Jürgen Kurths, co-author and co-chair of the PIK research department for Complexity Science. “We develop and apply advanced mathematical approaches to investigate real-world problems that have tremendous impacts on people all over the planet — the Amazon rainforest is of great relevance for global carbon and water cycles and interacts with a number of other critical elements of the Earth system,” explains co-author Marina Hirota from the Federal University of Santa Catarina in Brazil.

“Our approach allows us to map out which regions are comparably more vulnerable to future precipitation changes,” says co-author Ricarda Winkelmann, co-leader of PIK FutureLab on ‘Earth Resilience in the Anthropocene’. Less ‘trained’ regions which aren’t used to frequent changes in rainfall will be especially affected. “Our analysis shows that in a business-as-usual greenhouse gas emission scenario, a large coherent region in the southern Amazon might be at risk of transitioning from forest to savanna.” The question is, how much change can the Amazon forest cope with? It turns out that while the Amazon is an ancient ecosystem with the ability to adapt over long time-scales, it might not be able to keep up with the pace of ongoing climate change.