Call Us: US - +1 845 478 5244 | UK - +44 20 7193 7850 | AUS - +61 2 8005 4826

A sample of hydrogen was collected by water displacement at 23.0°C and an atmospheric pressure of 735 mmHg. Its volume is 568 mL. After water vapor is removed, what volume would the hydrogen occupy at the same conditions of pressure and temperature? (The vapor pressure of water at 23.0°C is 21 mmHg.)

Neurotoxicity/ We endeavored here to shed light on the supply of glutathione (GSH) precursors from glial cells to neurons and on the interference of ammonia with this process. Administration of ammonium chloride (ammonia) via a microdialysis probe to the rat prefrontal cortex rapidly increased GSH content in the microdialysates. The increase was abrogated by the inhibitor of astrocytic energy metabolism fluoroacetate and the inhibitor of glutathione synthesis buthionine sulfoximine. GSH in the microdialysates was significantly elevated in rats with simple hyperammonemia (HA) or hepatic encephalopathy (HE) (three ip administrations of ammonium acetate or thioacetamide, respectively, at 24-h intervals), only when microdialysis was carried out in the presence of a gamma-glutamyltranspeptidase (gammaGT) inhibitor acivicin. Extracellular GSH increased in cultured rat cortical astrocytes treated with 5mM ammonia for 1 hr, but not for 3-72 hr, which was the period of increased gammaGT activity. GSH remained increased during the whole 72-hr incubation with 5 or 10mM ammonia in C6 glioma cells, where gammaGT activity is intrinsically low and was not increased by ammonia. Collectively, the results suggest that in rats with HA or HE ammonia specifically promote GSH synthesis and export from astrocytes and increase its extracellular degradation, which may improve the availability of precursors for GSH synthesis in neurons and their resistance to ammonia toxicity.